Abstract

Background: Liver is the largest organ in the body. It constitutes 2.5% of the body weight and receives approximately 25% of the cardiac output via both the dual blood flow and the portal vein as well as the hepatic artery, the latter of which contributes to 75–80% of the total flow and >50% of the total oxygen supply. Warm ischemia/reperfusion (I/R) injury is a common acute liver injury in clinical scenario. The Pringle manoeuvre in many liver surgeries is one of the many causes. By now researchers have found out that I/R can be mediated by many mechanisms including the pressure change in liver sinusoids mediated by sinusoidal endothelial cells (SEC) and nitric oxide (NO), innate immunity regulation by Kupffer cell, ATP-depletion-dependent liver cell necrosis and caspase-dependent apoptosis. Akt is a serine/threonine kinase which plays a critical role in regulating various biological processes including apoptosis, autophagy, cell growth, regeneration and protein synthesis. It has been revealed that Akt activates downstream proteins like Bad to regulate pathogenesis of liver I/R injury. Wip1 (wild-type p53 induced phosphatase 1), another serine/threonine phosphatase, plays a key role in immunity and inflammation. However, it still remains mystery whether wip1 is involved in pathogenesis and progression of liver I/R injury. In this study, we were aimed to discover the functional role of wip1 gene in acute liver injury and the possible underlying mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.