Abstract

The coastal waters off the southeastern United States (SEUS) are a primary wintering ground for the endangered North Atlantic right whale (Eubalaena glacialis), used by calving females along with other adult and juvenile whales. Management actions implemented in this area for the recovery of the right whale population rely on accurate habitat characterization and the ability to predict whale distribution over time. We developed a temporally dynamic habitat model to predict wintering right whale distribution in the SEUS using a generalized additive model framework and aerial survey data from 2003/2004 through 2012/2013. We built upon previous habitat models for right whales in the SEUS and include data from new aerial surveys that extend the spatial coverage of the analysis, particularly in the northern portion of this wintering ground. We summarized whale sightings, survey effort corrected for probability of whale detection, and environmental data at a semimonthly resolution. Consistent with previous studies, sea surface temperature (SST), water depth, and survey year were significant predictors of right whale relative abundance. Additionally, distance to shore, distance to the 22°C SST isotherm, and an interaction between time of year and latitude (to account for the latitudinal migration of whales) were also selected in the analysis presented here. Predictions from the model revealed that the location of preferred habitat differs within and between years in correspondence with variation in environmental conditions. Although cow-calf pairs were rarely sighted in the company of other whales, there was minimal evidence that the preferred habitat of cow-calf pairs was different than that of whale groups without calves at the scale of this study. The results of this updated habitat model can be used to inform management decisions for a migratory species in a dynamic oceanic environment.

Highlights

  • The North Atlantic right whale (Eubalaena glacialis) is highly endangered, and it has received protection from the Endangered Species Act of 1973 and the Marine Mammal Protection Act of 1972, the species remains well below its optimum sustainable population level [1]

  • In agreement with previous studies, our results indicate that generalized additive models (GAMs) are a useful tool for relating cetacean distribution to environmental variables and predicting cetacean occurrence and relative density based upon those variables [26,36]

  • The development of a GAM, along with the ability to collect environmental data via remote sensing and to apply GIS processing techniques, permitted us to interpolate our results and estimate relative abundance of right whales, with associated standard error, in regions of our study area not sampled by aerial surveys

Read more

Summary

Introduction

The North Atlantic right whale (Eubalaena glacialis) is highly endangered, and it has received protection from the Endangered Species Act of 1973 and the Marine Mammal Protection Act of 1972, the species remains well below its optimum sustainable population level [1]. Measures designed to reduce the likelihood of ship collisions with right whales in high-risk areas include a mandatory ship reporting system, seasonal management areas with ship speed restrictions, recommended transit lanes for large ships, and aerial surveys during the calving season (Figure 1). In an effort to enhance protection measures for North Atlantic right whales, aerial surveys in the SEUS have been supported since the early 1990s by a collection of agencies, including the National Oceanic and Atmospheric Administration National Marine Fisheries Service (NOAA Fisheries), the US Coast Guard, the US Navy, and the US Army Corps of Engineers. Additional surveys off South Carolina and northern Georgia (SC-GA) were implemented in the 2004/2005 calving season (Figure 1) with similar objectives, providing coverage from Sapelo Sound, GA (31.56u N) to North Myrtle Beach, SC (33.82u N)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call