Abstract

Within the outline of air quality studies at metropolitan city, the mixing ratios of seven selected volatile organic compounds (VOCs) were measured during December 2015 (winter) at an urban site of Pune. The measurement of VOCs was conducted using a proton transfer reaction-quadrupole mass spectrometer (PTR-QMS). The study represents daily variability of ambient VOCs and their various associated emission sources. Diurnal profiles have differed from one VOC to another as the result of their different origins and the influence of different meteorological parameters (i.e. solar radiation, temperature) and planetary boundary layer height (PBL-H). The hourly mixing ratios of Oxygenated-VOCs (OVOCs) and aromatics were in the ranges of 0.6–29 ppbv and 0.13–14 ppbv, respectively with OVOCs accounted for up to 75% of total measured VOCs. The role of long-range transport from the clear Thar Desert and polluted Indo-Gangetic Plain (IGP) was observed during the episodes of 1–15 and 17–31 December 2015, respectively. VOCs showed the strong diurnal variations with peaks during morning and evening hours and lowest in the afternoon. In the evening period, high levels of aromatics coincided with the lowest OVOCs suggests the role of fresh vehicular emissions. Emission ratios of various VOCs as a function of temperature showed the role of different sources including the biogenic and photochemical production as well as the anthropogenic sources, respectively. The higher emission ratio of Δmethanol/Δacetonitrile at the study site suggests the long range transport of biomass burning plumes from the Indo-Gangetic Plain (IGP) during the 17–31, Dec. 2015. In addition to the pattern of emission, the diurnal and day-to-day variations of VOCs were influenced by the local meteorological conditions and depth of planetary boundary layer (PBL-H).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.