Abstract

AbstractThe machine learning technique, namely artificial neural networks (ANN), is used to predict the surface air temperature (SAT) anomalies over Japan in the winter months of December, January, and February for the period 1949/50–2019/20. The predictions are made for the four regions Hokkaido, North, Central, and West of Japan. The inputs to the ANN model are derived from the anomaly correlation coefficients among the SAT anomalies over the regions of Japan and the global SAT and sea surface temperature anomalies. The results are validated using anomaly correlation coefficient (ACC) skill scores with the observation. It is found that the ANN predictions over Hokkaido have higher ACC skill scores compared to the ACC scores over the other three regions. The ANN-predicted SAT anomalies are compared with that of ensemble mean of eight of the North American Multimodel Ensemble (NMME) models besides comparing them with the persistent anomalies. The ANN predictions over all the four regions have higher ACC skill scores compared to the NMME model skill scores in the common period of 1982/83–2018/19. The ANN-predicted SAT anomalies also have higher hit rate and lower false alarm rate compared to the NMME-predicted SAT anomalies. All these indicate that the ANN model is a promising tool for predicting the winter SAT anomalies over Japan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call