Abstract

AbstractObservations and analysis of an ice–liquid phase precipitation event, collected with an S-band polarimetric KOUN radar and a two-dimensional video disdrometer (2DVD) in central Oklahoma on 20 January 2007, are presented. Using the disdrometer measurements, precipitation is classified either as ice pellets or rain/freezing rain. The disdrometer observations showed fast-falling and slow-falling particles of similar size. The vast majority (>99%) were fast falling with observed velocities close to those of raindrops with similar sizes. In contrast to the smaller particles (<1 mm in diameter), bigger ice pellets (>1.5 mm) were relatively easy to distinguish because their shapes differ from the raindrops. The ice pellets were challenging to detect by looking at conventional polarimetric radar data because of the localized and patchy nature of the ice phase and their occurrence close to the ground. Previously published findings referred to cases in which ice pellet areas were centered on the radar location and showed a ringlike structure of enhanced differential reflectivity ZDR and reduced copolar correlation coefficient ρhv and horizontal reflectivity ZH in PPI images. In this study, a new, unconventional way of looking at polarimetric radar data is introduced: slanted vertical profiles (SVPs) at low (0°–1°) radar elevations. From the analysis of the localized and patchy structures using SVPs, the polarimetric refreezing signature, reflected in local enhancement in ZDR and reduction in ZH and ρhv, became much more evident. Model simulations of sequential drop freezing using Marshall–Palmer DSDs along with the observations suggest that preferential freezing of small drops may be responsible for the refreezing polarimetric signature, as suggested in previous studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.