Abstract
In northern China, district heating systems without terminal control typically serve thousands of end-users, thus inevitably some users suffer from insufficient warmth and others are overheated indoors due to hydraulic imbalances. This paper aimed to understand the indoor thermal conditions and the actual heating demand in low-quality centrally heated dwellings. The driving force of heating demand was analyzed based on a smartphone survey of 233 households in cold climates, and field measurements of winter indoor thermal environment and AC supplemental heating behavior were conducted in a sample of 13 cool dwellings. Logistic regression and heteroskedasticity-robust Ordinary Least Squares were adopted to assess AC usage patterns and driving forces of heating demand, respectively. New knowledge has been gathered regarding average temperatures of 17.4 ℃ and 16.8 °C in cool housing living rooms and bedrooms, respectively, outside the human thermal comfort zone. Simultaneously, intermittent and partial AC usage patterns induced by time and air temperature were observed in these cool end-users for the comfort. The average daily running time of AC devices was 2.0 h for the living room and 1.8 h for the bedroom. There were statistically significant base linking occupants' heating demands to education level, household income, tenure type, presence of children, thermal experience and heating system. However, it was not a significant factor for household size. In addition, a rebound effect of building energy efficiency improvements on the interior temperature was also noticed. The results of this study shed light on better and target-oriented residential internal temperature or heating system design for both thermal comfort requirements and energy-savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.