Abstract
Enhancing the ability of coastal blue carbon to accumulate and store carbon and reduce net greenhouse gas emissions is an essential component of a comprehensive approach for tackling climate change. The annual winter harvesting of Phragmites is common worldwide. However, the effects of harvesting on methane (CH4) emissions and its potential as an effective blue carbon management strategy have rarely been reported. In this study, the effects of winter Phragmites harvesting on the CH4 and carbon dioxide (CO2) fluxes and the underlying mechanisms in coastal Phragmites wetlands were investigated by comparing the eddy covariance flux measurements for three coastal wetlands with different harvesting and tidal flow conditions. The results show that harvesting can greatly reduce the CH4 emissions and the radiative forcing of CH4 and CO2 fluxes in coastal Phragmites wetlands, suggesting that winter Phragmites harvesting has great potential as a nature-based strategy to mitigate global warming. The monthly mean CH4 fluxes were predominantly driven by air temperature, gross primary productivity, and latent heat fluxes, which are related to vegetation phenology. Additionally, variations in the salinity and water levels exerted strong regulation effects on CH4 emissions, highlighting the important role of proper tidal flow restoration and resalinization in enhancing blue carbon sequestration potential. Compared with the natural, tidally unrestricted wetlands, the CH4 fluxes in the impounded wetland were less strongly correlated with hydrometeorological variables, implying the increased difficulties of predicting CH4 variations in impounded ecosystem. This study facilitates the improved understanding of carbon exchange in coastal Phragmites wetlands with harvesting or impoundment, and provides new insights into effective blue carbon management strategies beyond tidal wetland restoration for mitigating the effects of climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.