Abstract

SUMMARYA 2-year study conducted in Salinas, California in 1989–91 showed that soil nitrate (NO3–N) concentrations were reduced by cover crops during a short winter fallow period and that this practice can be compatible with year-round vegetable crop production schedules by planting and incorporating cover crops directly on the beds into which the lettuce crop will be direct seeded in the early spring. Cover crops grown the first year were oilseed radish (Raphanus sativus cv. Renova), white senf mustard (Brassica hirta cv. Martigena), white mustard (Brassica alba), Phacelia (Phacelia tanacetifolia cv. Phaci), rye (Secale cereale cv. Merced) and annual ryegrass (Lolium multiflorum). Only phacelia and Merced rye were included in the second year. In both years, all of the cover crops depleted soil NO3-N and soil moisture relative to the fallow control. Estimates of cover crop root length, based on core sampling to 60 cm soil depth, averaged 18800 m/m2 after 17 weeks of growth the first year and 12500 m/m2 after 13 weeks of growth the second year. Above-ground dry matter production averaged 449 g/m2 (12·8 g N/m2) the first year and 161 g/m2 (61 g N/m2) during a shorter growing period and under the more adverse growing conditions of the second year. Following cover crop incorporation with a rotary tiller, soil ammonium (NH4-N), N03-N and net mineralizable N (anaerobic incubation) peaked after c. 1 week, then gradually declined for 1 month. Cover-cropped plots sustained higher net mineralizable N levels than the fallow control after incorporation. Nitrate concentrations after spring rains were lower in soils left fallow during winter. The subsequent lettuce crop was not affected by cover crop treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call