Abstract

We examine retailers that maximize their relative profit, which is the (absolute) profit relative to the average profit of the other retailers. Customer behavior is modelled by a multinomial logit (MNL) demand model. Although retailers with low retail prices attract more customers than retailers high retail prices, the retailer with the lowest retail price, according to this model, does not attract all the customers. We provide first and second order derivatives, and show that the relative profit, as a function of the own price, has a unique local maximum. Our experiments show that relative profit maximizers beat absolute profit maximizers, i.e. They outperform absolute profit maximizers if the goal is to make a higher profit. These results provide insight into market simulation competitions, such as the Power TAC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.