Abstract

Winnerless competition is analyzed in coupled maps with discrete temporal evolution of the Lotka-Volterra type of arbitrary dimension. Necessary and sufficient conditions for the appearance of structurally stable heteroclinic cycles as a function of the model parameters are deduced. It is shown that under such conditions winnerless competition dynamics is fully exhibited. Based on these conditions different cases characterizing low, intermediate, and high dimensions are therefore computationally recreated. An analytical expression for the residence times valid in the N-dimensional case is deduced and successfully compared with the simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.