Abstract

We study Facility Location games, where a number of facilities are placed in a metric space based on locations reported by strategic agents. A mechanism maps the agents' locations to a set of facilities. The agents seek to minimize their connection cost, namely the distance of their true location to the nearest facility, and may misreport their location. We are interested in mechanisms that are strategyproof, i.e., ensure that no agent can benefit frommisreporting her location, do not resort to monetary transfers, and approximate the optimal social cost. We focus on the closely related problems of k-Facility Location and Facility Location with a uniform facility opening cost, and mostly study winner-imposing mechanisms, which allocate facilities to the agents and require that each agent allocated a facility should connect to it. We show that the winner-imposing version of the Proportional Mechanism (Lu et al., EC '10) is stategyproof and 4k-approximate for the k-Facility Location game. For the Facility Location game, we show that the winner-imposing version of the randomized algorithm of (Meyerson, FOCS '01), which has an approximation ratio of 8, is strategyproof. Furthermore, we present a deterministic non-imposing group strategyproof O(log n)-approximate mechanism for the Facility Location game on the line.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call