Abstract

The pea aphid, Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae), shows wing polyphenism (winged and wingless morphs) in its life cycle. The winged morph is adapted for dispersal; its two developmental adult stages (for dispersal and reproduction) are based on its breeding periods. The two morphs show different phototactic behavior and the winged can change its preference to light according to the developmental stages. To determine the mechanism and ecological functions of phototaxis for A. pisum, we first investigated the phototaxis of the two aphid morphs at different stages and analyzed the phototactic response to lights of different wavelengths; the correlation between alate fecundity and their phototactic behaviors were then studied. Finally, we focused on the possible functions of phototaxis in aphid host location and distribution in combination with gravitaxis behaviors. Negative phototaxis was found for breeding winged adults but all the other stages of both winged and wingless morphs showed positive phototaxis. The reactions of the aphids to different wavelengths were also different. Nymph production in winged adults showed negative correlation to phototaxis. The dopamine pathway was possibly involved in these behavior modifications. We speculated that winged adults can use light for dispersal in the early dispersal stage and for position holding in the breeding stage. Based on our results, we assume that light signals are important for aphid dispersal and distribution, and are also essential for the pea aphids to cope with environmental changes.

Highlights

  • The pea aphid Acyrthosiphon pisum (Harris), exhibits wing phenotypes at various stages of its life cycle (Braendle et al, 2006)

  • Based on the different phototactic results in winged adults, we analyzed the relationship between phototactic response and fecundity; and we focused on the phototactic behaviors of selected aphids to different wavelengths of light

  • Our experiments showed that winged A. pisum could change their phototaxis during their development, and this change can assist aphids in dispersal and host distribution

Read more

Summary

Introduction

The pea aphid Acyrthosiphon pisum (Harris), exhibits wing phenotypes at various stages of its life cycle (Braendle et al, 2006). Winged morph is adapted for dispersal and wingless morph for reproduction. The winged and wingless phenotypes in aphids differ in morphology, physiology, and behavior. The winged morph exhibits an elaborate sensory system for flight and host plant location, such as more fully developed compound eyes, ocelli, and longer antennae with more rhinaria as compared with the wingless morph. The wingless morph lacks wings and the wing musculature for dispersal, but it has a faster development time and a larger body size for production than the winged morph (Braendle et al, 2006; van Emden and Harrington, 2007; Brisson, 2010). Density (tactile stimulation) and nutrition (host plant quality) are considered to

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.