Abstract
The wing-graph W(G) of a graph G has all edges of G as its vertices; two edges of G are adjacent in W(G) if they are the nonincident edges (called wings) of an induced path on four vertices in G. Hoang conjectured that if W(G) has no induced cycle of odd length at least five, then G is perfect. As a partial result towards Hoang's conjecture we prove that if W(G) is triangulated, then G is perfect. © 1997 John Wiley & Sons, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.