Abstract

We evaluated the directional asymmetry between right and left wings and quantified the intraspecific and interspecific variation of the wing shape of 601 specimens of the genus Diachlorus to determine to what extent the geometrical variation discriminates six species distributed in six protected areas of Colombia. Geometric analyses were performed, integrating Procrustes methods, principal component analyses, cluster analyses, linear and quadratic discriminant analyses, and evaluations of shape changes. In Diachlorus, left and right wings did not present significant asymmetry but a geometrical analysis was allowed for species identification and, in some cases, the origin of the specimens using the variation of wing shape; the best-assigned species was Diachlorus leticia Wilkerson & Fairchild, while the worst was Diachlorus jobbinsi Fairchild, which also had the highest intraspecific variation, while Diachlorus fuscistigma Lutz had the lowest variation. Diachlorus fuscistigma and Diachlorus leucotibialis Wilkerson & Fairchild were the most similar species, while D. leucotibialis and Diachlorus nuneztovari Fairchild & Ortiz were the most disimilar. The specimens with the most different wing shape belonged to Chocó (especially those of D. jobbinsi), the geographically farthest area from the others in the study; however, no correlation was observed between geometric and geographical distances. Linear discriminants were better than nonlinear (quadratic) discriminant analyses in predicting species membership, but the opposite was true for predicting area membership. Based on our data, we hypothesized that other species of Diachlorus could also be discriminated using geometric morphometry of the wing shape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call