Abstract

SummaryA comparison between computed and experimental pressure distributions on straight and forward-swept wings placed in interference with a fore canard surface at M = 0·3 and Re ≈ 2·8x106 is presented. It is shown that a numerical code, based on a non-linear vortex lattice method and expressly developed for the analysis of interfering lifting surfaces, is capable, in spite of its simplicity, of very accurate predictions in all configurations which do not correspond to sufficiently high angles of attack and to a close interference between the fore wake and the wing surface. Furthermore, even in the latter cases the predictions are acceptable, and the code is shown to be extremely robust as regards the variation of all its free parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call