Abstract

The accessory pulsatile organs for hemolymph circulation in the wings of 7 Mecoptera species were investigated by means of serial semi-thin sections, SEM and TEM. The wing-hearts are located in the dorsal meso- and metathorax, and have no connection to the aorta. Each wing-heart consists of a small hemolymph chamber formed above by the convex scutellum, and below by a horizontal muscular diaphragm. The chamber is connected to the posterior wing veins by a cuticular tube on each side of the body. The diaphragm (10–15 μm thick) is convex in cross-section and consists of transversely extended muscle fibers. Their ultrastructure reveals typical characters of myocardial and other visceral muscle fibers. The diaphragm muscle is innervated by a pair of thin nerves originating from the thoracic ganglion of each corresponding segment. The diaphragm is held in a convex position by numerous elastic strands (2 μm in diameter), which extend through the wing-heart lumen between the scutellum and the diaphragm. The diastolic phase of the wing-heart is caused by contraction of the diaphragm muscle fibers. Thus, the diaphragm flattens and hemolymph is drawn from the posterior wing veins. The systolic phase is caused by the elasticity of the suspending strands after relaxation of the muscle fibers. The elastic strands pull the diaphragm back into convex position and hemolymph is expelled out of the scutellum lumen into the thorax cavity through a valvular opening on the anterior side. The hemolymph flow from the posterior wing base to the scutellum lumen, was visualized by staining the hemolymph. In Panorpa communis the volume of the wing-heart lumen measures 1.6 × 10 −2 mm 3 in the mesothorax, and 1.2 × 10 −2 mm 3 in the metathorax. Each heartbeat transports a maximum of 65% of these volumes. The pumping frequency was 78 ± 20 beats per min, registered with a non-invasive photo-optical method in restrained animals. Corresponding pulsating movements occur as a passive phenomenon of wing-heart activity in a distinct area of the wing base. Only minor differences were found in the construction of wing-hearts among the investigated species, except for Boreus hyemalis, which lacks these accessory circulatory organs. The functional morphology of the wing-hearts in Mecoptera is compared with that of other Holometabola and aspects of the evolution of these organs are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.