Abstract

Simple SummaryDifferent mosquito species have different ecology and behaviors. Therefore, the correct identification of vector mosquito species is essential for the development of targeted mosquito control operations. Traditionally, the identification of mosquitoes to species relies on differences in their external morphological characters. Identifying mosquitoes can be challenging if the specimen is either damaged or if only a few morphological characters can be used to sort them apart. For this reason, this study focused on the use of wing geometric morphometrics to identify Culex species from the subgenus Culex that are not easily identified by their external morphology. We analyzed the wing shape variation of 11 different species. Our results indicated that the species in this study were identified with high degrees of confidence based on their wing shape variation. From all possible comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Overall, our results are suggesting that wing geometric morphometrics is a reliable tool to identify Culex species of the subgenus Culex.Culex is the largest subgenus within the genus Culex that includes important vectors of diseases. The correct identification of mosquitoes is critical for effective control strategies. Wing geometric morphometrics (WGM) has been used to identify mosquito species alongside traditional identification methods. Here, WGM was used for eleven Culex species from São Paulo, Brazil, and one from Esquel, Argentina. Adult mosquitoes were collected using CDC (Centers for Disease Control) traps, morphologically identified and analyzed by WGM. The canonical variate analysis (CVA) was performed and a Neighbor-joining (NJ) tree was constructed to illustrate the patterns of species segregation. A cross-validated reclassification test was also carried out. From 110 comparisons in the cross-validated reclassification test, 87 yielded values higher than 70%, with 13 comparisons yielding 100% reclassification scores. Culex quinquefasciatus yielded the highest reclassification scores among the analyzed species, corroborating with the results obtained by the CVA, in which Cx. quinquefasciatus was the most distinct species. The high values obtained at the cross-validated reclassification test and in the NJ analysis as well as the segregation observed at the CVA made it possible to distinguish among Culex species with high degrees of confidence, suggesting that WGM is a reliable tool to identify Culex species of the subgenus Culex.

Highlights

  • Vector-borne diseases (VBD) constitute a significant burden on human society, with millions of people infected every year

  • Microevolutionary and speciation processes add an increased level of complexity to the correct identification of Culex species [33]. Cryptic species, such as the species complex formed by Cx. quinquefasciatus and Cx. pipiens and the Cx. coronator complex, pose as an increasing need for additional taxonomic tools for the correct identification of Culex species [34,35]

  • It is important to note that, with the exception of Cx. quinquefasciatus, all Culex species used in this study are not easy to recognize even for entomologists with some experience

Read more

Summary

Introduction

Vector-borne diseases (VBD) constitute a significant burden on human society, with millions of people infected every year. There is growing evidence indicating that VBDs are responsible for the morbidity and mortality associated with the acute infection of the diseases they cause, such as malaria, dengue, and yellow fever and for persistent long-term morbidity in the form of severe neurologic complications and fetus malformations associated to Zika virus infections [1,2,3]. Effective mosquito control strategies have to take into account and base their action on the targeted mosquito vector and develop the control actions based on its ecology and behavior. In this context, the correct identification of mosquito species is critical for planning and guiding effective long-term mosquito control operations

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.