Abstract

Inspired by bat flight performance, we explore the advantages of wing twist and fold for flapping wing robots. For this purpose, we develop a dynamical model that incorporates these two degrees of freedom to the wing. The twist is assumed to be linearly-increasing along the wing, while the wing fold is modeled as a relative rotation of the handwing with respect to the armwing. An optimization scheme parameterizes the wing kinematics for 2, 5 and 8 m/s forward flight velocities. The intricate interplay between wing orientation, effective angle of attack and the ensuing lift and thrust generation are discussed. The results show that wing twist and fold alleviate negative lift and thrust in the upstroke, and in some cases producing persistent positive thrust throughout cycle for handwing. As a result, power consumption drops precipitously compared to the base case of a rigid flat plate. Another crucial realization is the relative importance of wing twist and fold in achieving efficient flight strongly depends on speeds. At slow flight, twist is significantly more effective in minimizing the power, but becomes energetically inefficient for fast speeds. The results also show that a 45° wing fold during upstroke is energetically beneficial for all speeds. The synergy of wing twist and fold are most prominent at slow flight. These findings provides useful guidelines for designing flapping wing robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call