Abstract
Insect wings are flexible structures that exhibit deformations of complex spatiotemporal patterns. Existing studies on wing deformation underscore the indispensable role of wing deformation in enhancing aerodynamic performance. Here, we investigated forward flight in bluebottle flies, flying semi-freely in a magnetic flight mill; we quantified wing surface deformation using high-speed videography and marker-less surface reconstruction and studied the effects on aerodynamic forces, power and efficiency using computational fluid dynamics. The results showed that flies' wings exhibited substantial camber near the wing root and twisted along the wingspan, as they were coupled effects of deflection primarily about the claval flexion line. Such deflection was more substantial for supination during the upstroke when most thrust was produced. Compared with deformed wings, the undeformed wings generated 59-98% of thrust and 54-87% of thrust efficiency (i.e. ratio of thrust and power). Wing twist moved the aerodynamic centre of pressure proximally and posteriorly, likely improving aerodynamic efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.