Abstract
Tannins are amphiphilic molecules, often polymeric, which can be generally described as a core containing hydrophobic aromatic rings surrounded by hydroxyl groups. They have been known for millennia and are part of human culture. They are ubiquitous in nature and are best known in the context of wine and tea tasting and food cultures. However, they are also very useful for human health, as they are powerful antioxidants capable of combating the constant aggressions of everyday life. However, their mode of action is only just beginning to be understood. This review, using physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, proteins and lipids, in the context of wine drinking while eating. There are many thermodynamic equilibria governing the interactions between tannins, saliva proteins, lipid droplets in food, membranes and the taste receptors embedded in them. Taste sensations can be explained using these multiple equilibria: for example, astringency (dry mouth) can be explained by the strong binding of tannin micelles to the proline-rich proteins of saliva, suppressing their lubricating action on the palate. In the presence of lipid droplets in food, the equilibrium is shifted towards tannin-lipid complexes, a situation that reduces the astringency perceived when consuming a tannic wine with fatty foods, the so-called “camembert effect”. Tannins bind preferentially to taste receptors located in mouth membranes, but can also fluidify lipids in the non-keratinized mucous membranes of the mouth, which can impair the functioning of taste receptors there. Cholesterol, present in large quantities in keratinized mucous membranes, stiffens them and thus prevents tannins from disrupting the conduction of information through other taste receptors. As tannins assemble and disassemble depending on whether they are in contact with proteins, lipids or taste receptors, a perspective on their potential use in the context of neurodegenerative diseases where fibrillation is a key phenomenon will also be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.