Abstract
Grapes and wine musts harbor a complex microbiome, which plays a crucial role in wine fermentation as it impacts on wine flavour and, consequently, on its final quality and value. Unveiling the microbiome and its dynamics, and understanding the ecological factors that explain such biodiversity, has been a challenge to oenology. In this work, we tackle this using a metagenomics approach to describe the natural microbial communities, both fungal and bacterial microorganisms, associated with spontaneous wine fermentations. For this, the wine microbiome, from six Portuguese wine appellations, was fully characterized as regards to three stages of fermentation – Initial Musts (IM), and Start and End of alcoholic fermentations (SF and EF, respectively). The wine fermentation process revealed a higher impact on fungal populations when compared with bacterial communities, and the fermentation evolution clearly caused a loss of the environmental microorganisms. Furthermore, significant differences (p < 0.05) were found in the fungal populations between IM, SF, and EF, and in the bacterial population between IM and SF. Fungal communities were characterized by either the presence of environmental microorganisms and phytopathogens in the IM, or yeasts associated with alcoholic fermentations in wine must samples as Saccharomyces and non-Saccharomyces yeasts (as Lachancea, Metschnikowia, Hanseniaspora, Hyphopichia, Sporothrix, Candida, and Schizosaccharomyces). Among bacterial communities, the most abundant family was Enterobacteriaceae; though families of species associated with the production of lactic acid (Lactobacillaceae, Leuconostocaceae) and acetic acid (Acetobacteriaceae) were also detected. Interestingly, a biogeographical correlation for both fungal and bacterial communities was identified between wine appellations at IM suggesting that each wine region contains specific and embedded microbial communities which may contribute to the uniqueness of regional wines.
Highlights
The knowledge and the understanding of the microbial terroir – how the microbiome contributes to the natural environment of grapes and to the identity of wine, is a process that starts at the vineyards, at the harvest of grapes, and evolves along the different stages of fermentation (Van Leeuwen and Seguin, 2006; Bokulich et al, 2013)
The microbial diversity was analyzed at three stages: initial musts (IM), corresponding to the juice of crushed grapes; start of alcoholic fermentation (SF) and end of alcoholic fermentation (EF), which corresponded to the weight loss of 5 and 70 g/L of sugar, respectively
Two target regions were used for the fungal population identification as previous experiments demonstrated that these combination would allow for the highest coverage of eukaryotic organisms (Pinto et al, 2014)
Summary
The knowledge and the understanding of the microbial terroir – how the microbiome contributes to the natural environment of grapes and to the identity of wine, is a process that starts at the vineyards, at the harvest of grapes, and evolves along the different stages of fermentation (Van Leeuwen and Seguin, 2006; Bokulich et al, 2013). The microflora of the grapes is highly variable, mostly due to the influence of external factors as environmental parameters, geographical location, grape cultivars and application of phytochemicals on the vineyards (Pretorius, 2000; Cadez et al, 2010; Pinto et al, 2014). These microbial communities play an important role during the winemaking process, as they metabolize the sugars from the grapes and produce a whole set of secondary metabolites that influence the wine aromatic quality (Fleet, 2003). Unveiling the microbial biodiversity of grapes and during their fermentation will expand our understanding on fermentation dynamics, on its control (Bisson, 1999; Bisson and Butzke, 2000) and may contribute to the identification of novel starter cultures (Fleet, 2008; Ciani et al, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.