Abstract

Layered double hydroxides (LDHs) are one of the most efficient electrocatalysts for water splitting due to their nanosheet features and compositional flexibilities. This work explored the impact of W precursor concentration (0 ∼ 10 mM) on LDH morphologies and performance in hydrogen production. Using an electrodeposition W-doping process, W-induced NiFe LDHs (NiFeW-LDHs) were in-situ grown on carbon fiber papers for water splitting. A performance peak was found at a W doping of 5 mM with well-aligned nanosheets, which not only boosted the charge transfer ability and gas evolution but also offered more than a four-fold electrochemical surface area increase compared to film-like NiFe hydroxides. The NiFeW-LDHs exhibited remarkable performance compared to NiFe hydroxides, showing decreased overpotentials of 31 mV and 114 mV for the oxygen evolution reactions (OERs) and hydrogen evolution reactions (HERs) at 10 mA/cm2 and -10 mA/cm2, respectively, in alkaline media. The performance enhancement at 5 mM W-doping was linked to the well-aligned NiFeW-LDH nanosheets; smaller, less-textured nanosheets were observed with lower or higher W precursor concentrations (2.5 mM or >7.5 mM), leading to inferior OER and HER performances. Hence, an appropriate W doping is crucial to generating the morphologies that contribute to the higher performance of NiFeW-LDHs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.