Abstract
In this paper, we generalize the classical windowed Fourier transform (WFT) to quaternion-valued signals, called the quaternionic windowed Fourier transform (QWFT). Using the spectral representation of the quaternionic Fourier transform (QFT), we derive several important properties such as reconstruction formula, reproducing kernel, isometry, and orthogonality relation. Taking the Gaussian function as window function we obtain quaternionic Gabor filters which play the role of coefficient functions when decomposing the signal in the quaternionic Gabor basis. We apply the QWFT properties and the (right-sided) QFT to establish a Heisenberg type uncertainty principle for the QWFT. Finally, we briefly introduce an application of the QWFT to a linear time-varying system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.