Abstract
The effective bandwidth of the dynamic random-access memory (DRAM) for the alternate row-wise/column-wise matrix access (AR/CMA) mode, which is a basic characteristic in scientific and engineering applications, is very low. Therefore, we propose the window memory layout scheme (WMLS), which is a matrix layout scheme that does not require transposition, for AR/CMA applications. This scheme maps one row of a logical matrix into a rectangular memory window of the DRAM to balance the bandwidth of the row- and column-wise matrix access and to increase the DRAM IO bandwidth. The optimal window configuration is theoretically analyzed to minimize the total number of no-data-visit operations of the DRAM. Different WMLS implementationsare presented according to the memory structure of field-programmable gata array (FPGA), CPU, and GPU platforms. Experimental results show that the proposed WMLS can significantly improve DRAM bandwidth for AR/CMA applications. achieved speedup factors of 1.6× and 2.0× are achieved for the general-purpose CPU and GPU platforms, respectively. For the FPGA platform, the WMLS DRAM controller is custom. The maximum bandwidth for the AR/CMA mode reaches 5.94 GB/s, which is a 73.6% improvement compared with that of the traditional row-wise access mode. Finally, we apply WMLS scheme for Chirp Scaling SAR application, comparing with the traditional access approach, the maximum speedup factors of 4.73X, 1.33X and 1.56X can be achieved for FPGA, CPU and GPU platform, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.