Abstract

We consider window designs for discrete Fourier transform (DFT) based multicarrier transceivers without using extra cyclic prefix. As in previous works of window designs for DFT-based transceivers, a postprocessing matrix that is generally channel dependent, is needed to have a zero-forcing receiver. We show that postprocessing is channel independent if and only if the window itself has the cyclic-prefixed property. We design optimal windows with minimum spectral leakage subject to the cyclic-prefixed condition. Moreover, we analyze how postprocessing affects the signal-to-noise ratio (SNR) at the receiver, which is an aspect that is not considered in most of the earlier works. The resulting SNR can be given in a closed form. Join optimization of spectral leakage and SNR are also considered. Furthermore, examples demonstrate that we can have a significant reduction in spectral leakage at the cost of a small SNR loss. In addition to cyclic-prefixed systems, window designs for zero-padded DFT-based transceivers are considered. For the zero-padded transceivers, windows that minimize spectral leakage can also be designed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.