Abstract
A method is described to count simple diagonal walks on Z2 with a fixed starting point and endpoint on one of the axes and a fixed winding angle around the origin. The method involves the decomposition of such walks into smaller pieces, the generating functions of which are encoded in a commuting set of Hilbert space operators. The general enumeration problem is then solved by obtaining an explicit eigenvalue decomposition of these operators involving elliptic functions. By further restricting the intermediate winding angles of the walks to some open interval, the method can be used to count various classes of walks restricted to cones in Z2 of opening angles that are integer multiples of π/4.We present three applications of this main result. First we find an explicit generating function for the walks in such cones that start and end at the origin. In the particular case of a cone of angle 3π/4 these walks are directly related to Gessel's walks in the quadrant, and we provide a new proof of their enumeration. Next we study the distribution of the winding angle of a simple random walk on Z2 around a point in the close vicinity of its starting point, for which we identify discrete analogues of the known hyperbolic secant laws and a probabilistic interpretation of the Jacobi elliptic functions. Finally we relate the spectrum of one of the Hilbert space operators to the enumeration of closed loops in Z2 with fixed winding number around the origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.