Abstract

A three-degree-of-freedom base hinged assembly (BHA) for aeroelastic model tests of tall building was developed. The integral parts of a BHA, which consists of two perpendicular plane frames and a flexural pivot, enable this modeling technique to independently simulate building translational and torsional degree-of-freedom. A program of wind tunnel aeroelastic model tests of the CAARC standard tall building was conducted with emphasis on the effect of (a) torsional motion, (b) cross-wind/torsional frequency ratio and (c) the presence of an eccentricity between center of mass and center of stiffness on wind-induced response characteristics. The experimental results highlight the significant effect of coupled translational-torsional motion and the effect of eccentricity between center of mass and center of stiffness on the resultant rms acceleration responses in both along-wind and cross-wind directions especially at operating reduced wind velocities close to a critical value of 10. In addition, it was sound that the vortex shedding process remains the main excitation mechanism in cross-wind direction even in case of tall buildings with coupled translational-torsional motion and with eccentricity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.