Abstract

[1] The daytime O(1S) emission at 557.7 nm observed at 250 km with the Wind Imaging Interferometer (WINDII) is dominantly excited by photoelectron impact on atomic oxygen, so the volume emission rate is normally a measure of the atomic oxygen concentration. Daily polar maps of the 250 km volume emission rate during geomagnetic disturbances display polar spirals extending out of the auroral region and down to the equator. Since the local time is fixed for a given latitude for a single day, the spiral maps form a spatio-temporal pattern in which the longitudinal variations cannot be distinguished from those in universal time. Simulations for 2 January 1993 implemented with the National Center for Atmospheric Research Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (TIME-GCM) using the equivalent satellite perspective show a remarkably similar spiral pattern. Hourly universal time simulations reveal a rapid equatorward expansion of the spirals during this modest geomagnetic event of Kp = 4.7, which are mirrored in the meridional and vertical winds. Simulations of the electron density show that the emission within the spirals is caused by the recombination of O2+ ions with electrons, and not the atomic oxygen enhancement itself. All of this strongly suggests that the spirals are in fact large-scale Traveling Ionospheric Disturbances (TIDs), and comparisons of the WINDII data made with TID observations reported in the literature, including those made on the same day, support this conclusion. The TIME-GCM simulations suggest that a component of the spirals originates in the lower atmosphere and appears at thermospheric heights.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.