Abstract

Abstract It is proposed that, for periods between about 10 and 220 days, the variability in Antarctic circumpolar transport is dominated by a barotropic mode that follows f/H contours almost everywhere. Theoretical arguments are given that suggest the possible importance of this mode and show that bottom pressure to the south of the current should be a good monitor of its transport. The relevance of these arguments to eddy-resolving models is confirmed by data from the Fine Resolution Antarctic Model and the Parallel Ocean Climate Model. The models also show that it may be impossible to distinguish the large-scale barotropic variability from local baroclinic processes, given only local measurements, although this is not generally a problem to the south of the Antarctic Circumpolar Current. Comparison of bottom pressures measured in Drake Passage and subsurface pressure on the Antarctic coast, with wind stresses derived from meteorological analyses, gives results consistent with the models, showing that wi...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call