Abstract

Variability in the Barents Sea ice cover on interannual and longer time scales has previously been shown to be governed by oceanic heat transport. Based on analysis of observations and results from an ocean circulation model during an event of reduced sea ice cover in the northeastern Barents Sea in winter 1993, it is shown that the ocean also plays a direct role within seasons. Positive wind stress curl and associated Ekman divergence causes a coherent increase in the Atlantic water transport along the negative thermal gradient through the Barents Sea. The immediate response connected to the associated local winds in the northeastern Barents Sea is a decrease in the sea ice cover due to advection. Despite a subsequent anomalous ocean-to-air heat loss on the order of 100 W m−2 due to the open water, the increase in the ocean heat content caused by the circulation anomaly reduced refreezing on a time scale of order one month. Furthermore, it is found that coherent ocean heat transport anomalies occurred more frequently in the latter part of the last five decades during periods of positive North Atlantic Oscillation index, coinciding with the Barents Sea winter sea ice cover decline from the 1990s and onward.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call