Abstract

A coupled hydrodynamic-wave-sediment model is used to simulate the broad-scale tidal circulation, surface waves, and suspended sediment concentrations (SSC) in Minas Basin, a 70-km long tidal estuary in the Bay of Fundy, during winter and summer periods. The model hydrodynamics are validated using acoustic-Doppler current profile observations, the surface SSC predictions are compared to satellite observations, and model results indicate that strong seasonal signals in SSC can be explained in part by seasonal changes in fetch-limited surface waves generated by local winds over the basin. The spatial and temporal variability of SSC is evaluated in this study by focussing on different forcing conditions from waves and tidal currents, the two primary physical process that influence the response of sediments in suspension. Model predictions in the intertidal areas indicate that surface waves can increase the bed shear stress from tidal currents alone by up to 1–5 Nm− 2, causing excess bed shear stresses to be higher and result in higher SSC by 100–200 gm− 3 particularly during wind events that are stronger and more frequent in winter months. Resuspension of sediments on tidal flats is driven by the combination of shear stresses from near-bed wave orbital velocities and tidal currents, and transport of the suspended materials over deeper areas of the basin is driven by advection from the strong tidal currents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.