Abstract

In order to solve the problems of low efficiency, time consumption and high costs in the detection of defects on wind turbine surfaces in industrial scenarios, an improved YOLOv5 algorithm for wind turbine surface defect detection is proposed, named YOLOv5s-L. Firstly, the C3 module of YOLOv5s is replaced with the C2f module, which is more abundant in gradient flow, to enhance the ability of feature extraction and feature fusion. Secondly, the Squeeze and Excitation (SE) module is embedded in the YOLOv5 Backbone network to filter out redundant feature information and retain important feature information. Thirdly, the weighted Bidirectional Feature Pyramid Network (BiFPN) is introduced to replace the FPN + PAN, which can achieve a higher level of feature fusion while keeping the weight light. Finally, the Focal Loss function is used to replace the CIOU Loss function of the YOLOv5 algorithm to optimize the training model and improve the accuracy of the algorithm. The experimental results show that, compared with the traditional YOLOv5 algorithm, the average precision mAP is improved by 1.9%, and the frame rate FPS can reach 145 F/s without increasing the model parameters; it can satisfy the requirements for real-time, accurate detection on mobile devices. This method provides effective support for surface defect detection of wind turbines and provides reference for intelligent wind farm operation and maintenance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call