Abstract
Current wind turbine (WT) studies focus on improving their reliability and reducing the cost of energy, particularly when they are operated offshore. WT Supervisory Control and Data Acquisition (SCADA) systems contain alarm signals providing significant important information. Pattern recognition embodies a set of promising techniques for intelligently processing WT SCADA alarms. This paper presents the feasibility study of SCADA alarm processing and diagnosis method using an artificial neural network (ANN). The back-propagation network (BPN) algorithm was used to supervise a three layers network to identify a WT pitch system fault, known to be of high importance, from pitch system alarm. The trained ANN was then applied on another 4 WTs to find similar pitch system faults. Based on this study, we have found the general mapping capability of the ANN help to identify those most likely WT faults from SCADA alarm signals, but a wide range of representative alarm patterns are necessary for supervisory training. (6 pages)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.