Abstract

ABSTRACT * As larger wind turbines are placed on taller towers, rotors frequently operate in atmospheric conditions that support organized, coherent turbulent structures. It is hypothesized that these structures have a detrimental impact on the blade fatigue life experienced by the wind turbine. These structures are extremely difficult to identify with sophisticated anemometry such as ultra-sonic anemometers. In order to ascertain the idealized worst-case scenario for vortical inflow structures impinging on a wind turbine rotor, we created a simple, analytic vortex model. The Rankine vortex model assumes the vortex core undergoes solid body rotation to avoid a singularity at the vortex center and is surrounded by a 2-dimensional potential flow field. Using the wind turbine as a sensor and the FAST wind turbine dynamics code with limited degrees of freedom, we determined the aerodynamic loads imparted to the wind turbine by the vortex structure. The size, strength, rotational direction, plane of rotation, and location of the vortex were varied over a wide range of operating parameters. We identified the vortex conformation with the most significant effect on blade root bending moment cycle amplitude. Vortices with radii on the scale of the rotor diameter or smaller caused blade root bending moment cyclic amplitudes that lead to reduced fatigue life. The rotational orientation, clockwise or counter-clockwise produces little difference in the bending moment response. Vortices in the XZ plane produce bending moment amplitudes significantly

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call