Abstract

A medium-voltage (MV) wind turbine generator (WTG)-battery energy storage (BESS) grid interface converter topology with medium-frequency (MF) transformer isolation is introduced in this paper. The system forms a three-port network in which several series stacked ac-ac converters transform the low-frequency (50/60 Hz) utility MV into MF (0.4 to 2 kHz) ac voltage by modulating it with MF square wave. This voltage is then fed to the MF transformer primary windings. The secondary and tertiary windings interface with the WTG side and the BESS side, respectively, after power conversion. The power generated by WTG is transferred to the MF transformer secondary windings through a three-phase pulse width modulation (PWM) rectifier and a three-phase PWM inverter, whereas the power transfer between the BESS and the tertiary winding occurs through a three-phase PWM inverter. It is shown that the utility grid sinusoidal currents, the battery current, and the WTG output currents can be controlled to be of good quality using PI and DQ control strategies. Thus, the proposed MF transformer-based three-port topology results in smaller converter weight/volume. Moreover, the control can handle voltage sags/swells and provide low voltage ride-through capability. Simulation waveforms along with experimental results are shown as proof of concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.