Abstract

The efficiency of the wind power conversions systems can be greatly improved using an appropriate control algorithm. In this work, an adaptive robust control for a variable speed wind power generation is described. A robust aerodynamic torque observer is also designed in order to avoid the wind speed sensors. The proposed adaptive robust control law is based on a sliding mode control theory, that presents a good performance under system uncertainties. The stability analysis of the proposed controller under disturbances and parameter uncertainties is provided using the Lyapunov stability theory. Finally simulated results show, on the one hand that the proposed controller provides high-performance dynamic characteristics, and on the other hand that this scheme is robust with respect to plant parameter variations and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.