Abstract

In cold areas, wind turbines face ice risk. The ice accretion on the blade surface will reduce the output power of wind turbines. To explore the effect of blade material on icing distribution, the blades of aluminum and carbon fiber-reinforced polymer (CFRP) were made, and the icing wind tunnel tests were carried out. The icing test is conducted under three icing times (2 min, 4 min, and 6 min) and three ambient temperatures (−5 °C, −10 °C, and −15 °C). The experimental results show that the icing time and ambient temperature are key factors in icing distribution. When the icing time increases, the average thickness of ice on the blade surface increases, and the airfoil profile of the blade changes significantly. When the ambient temperature decreases, the average thickness of ice on the blade surface increases, and the ice type changes from glaze ice to rime ice. The effect of blade material on the icing distribution is significantly affected by ambient temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call