Abstract
A control method is proposed to reduce vibrations in helicopters using active trailing-edge flaps on the rotor blades. Each blade is controlled independently, taking into account possible blade dissimilarities. The method consists of performing simultaneous system identification and closed-loop control at each time step. For the system identification, different inputs are applied to each blade, and the relationship between the individual blade inputs and the resulting loads in the fixed frame is estimated on-line, assuming a linear-time-periodic model of the helicopter. Closed-loop tests are conducted using a four-bladed Mach-scaled rotor with piezobender trailing-edge flaps. The rotor model is fitted on a bearingless model-scale hub and tested in the Glenn L. Martin wind tunnel. These tests demonstrate the controller's ability to account for blade dissimilarities and generate different optimal inputs for each blade. The 1 and 4/rev components of fixed frame loads are reduced individually by 50 and 60%. Simultaneous reduction of 1 and 4/rev components is also demonstrated (43% reduction). However, vibration increases are noted for some nontarget hub loads.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.