Abstract

For wind turbines under offshore conditions, ice accretion occurs on the blade surface in winter because of the cold and humid environment, which leads to the performance degradation of the wind turbine. The characteristics of icing on the wind turbine blade surface under the in-cloud condition with salinity are explored. A blade segment with an airfoil of NACA0018 is selected. The tests of icing on the blade surface in different conditions of salinities, temperatures, and wind speeds are conducted in a return-flow icing wind tunnel. Two parameters are defined to evaluate icing characteristics. The distribution and amount of ice are analyzed quantitatively. Results show that salinity can restrain the amount of ice accretion. Oppositely, low temperatures and high wind speeds can increase the amount of ice. A self-developed device was manufactured to measure the adhesion strength of ice. The effects of salinity, temperature, and wind speed on adhesion strength are studied. Research indicates that adhesion strength decreases sharply first and then slowly with an increase in salinity. Even though low temperature and high wind speed both increase the adhesion strength, the growth rate decreases. The research provides a reference for anti- and de-icing technologies of offshore wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.