Abstract

Resuspension is an important source of indoor particles and the amount of dust loading is an important factor in resuspension emission rates. Field studies have shown that light to heavy dust loads can be found in the indoor environment, on both the surfaces of flooring and ventilation ducts. These diverse particle deposits can be broadly classified as either a monolayer, in which particles are sparsely deposited on a surface, or a multilayer, in which particles are deposited on top of one another and there is particle-to-particle adhesion and interaction. This experimental wind tunnel study explores the role of the type of particle deposit on aerodynamic resuspension from linoleum flooring and galvanized sheet metal. Resuspension fractions are reported for both monolayer and multilayer deposits exposed to a wide range of air velocities. The type of particle deposit is found to strongly influence resuspension. In general, the results show that resuspension from multilayer deposits can occur at significantly lower velocities compared with monolayer deposits. For example, resuspension fractions at an air velocity of 5 m/s for the canopy layer of multilayer deposits were similar to those found for monolayer deposits at 50 m/s. Additionally, for multilayer deposits, resuspension fractions for the canopy layer increased with increasing dust load and negligible resuspension occurred along the surface layer. It was found that the relationship between the particle deposit height and the viscous sublayer thickness of the airflow can help explain the differences in resuspension that were observed between the two types of deposits. The impact of the type of particle deposit on resuspension may have important implications for resuspension in the indoor environment, where a diversity of deposits can be found. Copyright 2013 American Association for Aerosol Research

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.