Abstract

The accurate simulation of wind flow in the boundary layer wind tunnel is very important for the relevant research on the environmental and structural wind engineering. Due to the earth's rotation, an Ekman spiral shaped wind direction profile would be generated, which is a common phenomenon in the thousand-meter high atmospheric boundary layer (ABL). However, the simulation of wind direction was overlooked in previous studies. In this study, based on the objectives of wind profiles determined by the field measurement, two twisted wind flows (TWFs) with the characteristics of thousand-meter high ABL are successfully simulated using the modified passive simulation technology, i.e. a combination of a self-developed vane system and the traditional passive simulation facilities. In the two TWFs, the wind speed profiles follow the power-law. The maximum wind twist angles are 24.2° and 14.7° respectively, and the variations of wind directions follow the Ekman spiral. The turbulence intensities fluctuate within the stipulations in Chinese Load Code, indicating that the results obtained in the wind tunnel test are reasonable. The power spectra of wind speed show good agreement with the von Karman spectrum. In order to evaluate the effect of TWF, the simulation of multi targets equivalent straight wind flow (SWF) is achieved. Then, the effect of TWF on the wind loads of megatall building is discussed so as to illustrate the importance of accurate simulation of wind flow. It is found that due to the existence of wind twist angle, for any specified wind direction, the wind force that acts on a thousand-meter high building is no longer a specific value, but varies with the total wind twist angle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.