Abstract

Wind tunnel measurements have widely been used for validation of computational fluid dynamics simulations of natural ventilation airflows. However, the majority of such measurements employed simple generic single-zone buildings, while there is a lack of studies on realistic buildings including flow-critical geometrical features (e.g. internal partitions). To assess the effect of internal partitions at different incident flow angles (α = 0° and α = 30°), wind tunnel measurements of velocities in and around a cross-ventilated realistic residential building (with and without internal partition) were performed. Measurements were conducted at a geometric scale 1:40, using laser Doppler anemometry. Results indicate a large impact of the internal partition on indoor airflow distribution and resulting ventilation flow rates. For instance, for α = 0°, on the partitioned building side, regions of velocity increase (from ∼0 m/s to ∼80% of the outdoor reference velocity, Uref), but also regions of velocity decrease (from ∼50% of Uref to ∼0 m/s) were observed. The ventilation flow rate through the windows at the partitioned side decreased by 23% and 32%, respectively. For the partitioned building, a change from α = 0° to α = 30° resulted in regions of velocity increase from 0 m/s to ∼60% of Uref.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.