Abstract

A wind tunnel experiment was carried out to simulate stack gas diffusion within an unstable atmospheric boundary layer over a coastal region. The wind tunnel floor, 4 m leeward of the entrance of the test section, was heated to 90°C over a length of 6 m in the streamwise direction, and wind tunnel experiments were performed under the flat plate condition with a prototype-to-model length scale ratio of 1200. Three similarity criteria of flow fields in the wind tunnel and in atmosphere, viz., bulk Richardson number, surface Reynolds number and the ratio of the Peclet number to the Richardson number, were considered in the wind tunnel experiment. Tracer gas was released along the coastline at a height of 10 cm, which corresponded to 120 m in height in atmosphere. The obtained wind tunnel experimental results of ground level concentration were compared with 30-min average values of the field experiments, viz., the data from the Tokai 82 field experiment. The maximum ground level concentration and its location were accurately simulated when there was close similarity between the wind tunnel and atmospheric flow conditions. The maximum concentration increased and occurred closer to the source when the level of convection was relatively stronger in atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.