Abstract
This paper presents the analyzed results from a combined wind tunnel and full-scale study of the wind effects on a super-tall building with a height of 420m in Hong Kong. In wind tunnel tests, mean and fluctuating forces and pressures on the building models for the cases of an isolated building and the building with the existing surrounding condition are measured by the high-frequency force balance technique and synchronous multi-pressure sensing system under two typical boundary layer wind flow fields. Global and local wind force coefficients and structural responses are presented and discussed. A detailed study is conducted to investigate the influences of incident wind direction, upstream terrain conditions and interferences from the surroundings on the wind loads and responses of the high-rise structure. On the other hand, full-scale measurements of the wind effects on the super-tall building have been performed under typhoon conditions. The field data, such as wind speed, wind direction, structural acceleration and displacement responses have been simultaneously and continuously recorded during the passage of 12 typhoons since 2008. Analysis of the field measured data is carried out to investigate the typhoon effects on the super-tall building. Finally, the model test results are compared with the full-scale measurements for verification of the wind tunnel test techniques. The comparative study shows that the wind tunnel testing can provide reasonable predictions of the structural resonant responses. The resonant displacement responses are comparable to the background displacement responses so that the contribution of the background responses to the total displacement responses should not be underestimated. The outcome of the combined wind tunnel and full-scale study is expected to be useful to engineers and researchers involved in the wind-resistant design of super-tall buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.