Abstract

Dynamic flow models are currently used to compute Detroit River discharges for hourly, daily, and monthly time scales. These models include the complete one-dimensional equations of continuity and motion, but neglect the effects of wind stress and ice. The effects of wind stress upon calculated daily and monthly Detroit River discharges are analyzed. The wind effects of several storms with wind setups and surges on Lake Erie were evaluated on an hourly time scale. Inclusion of wind stress terms into the Detroit River models was found to have no significant effect on the monthly flow calculations and on the majority of the daily flow calculations. However, the average monthly effect of −47 m 3 s −1 is equivalent to 111 mm depth of water per month on Lake St. Clair, which may be significant for some Lake St. Clair water balance studies. The effect on Lake Erie is on the order of 5 mm of depth per month, which is not significant for water balance studies. The wind stress was found to be important for daily and hourly flow computations when wind velocities were in excess of about 6 m s −1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.