Abstract

When installing offshore wind farms (OWFs) adjacent to the coast, one needs to consider the combined effects of the wind wakes caused by the OWFs and natural horizontal coastal wind speed gradients (HCWSGs). This study exploits the full Sentinel 1A/B and Envisat archive of synthetic aperture radar (SAR) imagery covering the northern European seas. More than 8700 SAR scenes fit well with our selection criteria and are processed as wind maps for the height 10 m above the sea surface. For eight selected wind farm sites, we systematically compare the wind flow variation before and after wind farm commissioning. Before the commissioning, we observe wind speed gradients up to ±4% for onshore and offshore winds. After the commissioning, we detect a 2–10% reduction in the mean wind speed downstream of the turbines after taking into account the background wind speed gradients. These velocity deficits are proportional to the OWF capacity. Our findings indicate that wind speed maps retrieved from SAR can be used to quantify the complex interactions between natural HCWSGs and turbine-induced effects on the mean wind climate. Ultimately, this can be used in connection with farm planning in coastal waters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call