Abstract

AbstractThe laws of wind-speed variation with height and their modification with stability are discussed and applied to observations in the first 2 m. over various cold surfaces. An exponential law is superior save in frequent, near-neutral conditions, but the logarithmic law is superior in neutral and again in really stable conditions. A power law and a logarithmic-plus-linear law give the best fit with the data only at moderate stabilities. A logarithmic-plus-cubic law of wind speed is evolved that permits suppression of linear additions to the logarithmic law at two distinct stabilities. A power form of variation of Richardson number with height is found and compared with a linear form. The former is applied with the logarithmicplus-cubic law to the observed data, though with limited success. Eddy-viscosity coefficients for the different laws are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.