Abstract
Wind speed forecasting is an effective method to improve power stability of wind farm. Grey system theory have certain advantages in the study of poor information and uncertainty problems, it is suitable for the system with limited computing power and data storage capacity, such as wind turbine control system. In order to further improve the prediction accuracy of grey model, we combined GM (1, 1) model and BP neural network prediction model in this paper, and improved the combined model by background value optimizing and introducing genetic algorithm. Through analyzing the simulation results and comparing the forecasting results with the actual wind speed, it is clear that the improved combined prediction model is superior to pure grey forecasting model and it meets the needs of the wind power control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.