Abstract

The prediction of wind speed is critical in the assessment of feasibility of a potential wind turbine site. This work presents a study on prediction of wind speed using artificial neural networks. Two variations of artificial neural networks, namely, nonlinear autoregressive neural network and nonlinear autoregressive neural network with exogenous inputs, were used to predict wind speed utilizing 1 year of hourly weather data from four locations around the United States to train, validate, and test these networks. This study optimized both neural network configurations and it demonstrated that both models were suitable for wind speed prediction. Both models outperformed persistence model (with a factor of about 2 to 10 in root mean square error ratio). Both artificial neural network models were implemented for single-step and multi-step-ahead prediction of wind speed for all four locations and results were compared. Nonlinear autoregressive neural network with exogenous inputs model gave better prediction performance than nonlinear autoregressive model and the difference was statistically significant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.