Abstract

As a renewable, clean and economical energy source, wind energy has rapidly infiltrated into the modern power grid system. Wind speed forecasting, the crucial technology of wind power grid connection, has attracted large amounts of scholars for research and modeling. However, a large number of models only focus on the point forecasts, which are far from meeting the requirements of risk control and evaluation of power system. To fill the gap, a novel forecasting model which combined the modified multi-objective tunicate algorithm, benchmark models, and Quantile regression is proposed for deterministic and probabilistic interval forecasts. Theoretical proof demonstrates that the proposed modified algorithm can combine the merits of all benchmark models and better solve the nonlinear characteristics of wind speed. Comparative experiments which include sixteen relevant models are performed on three datasets to validate the performance of the proposed model. Simulation results show that the proposed model is the most accurate in all datasets, and can also get the interval forecast results with relatively high coverage and the narrowest width. Therefore, this model can provide accurate point forecasting results and uncertainty information, which is beneficial to the real-time control of wind turbine and power grid dispatching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.